Abstract:
Interventional cardiology is a method of treating patients with coronary disease via “intervention” to open blocked or clogged arteries to improve blood flow to and from the heart. An example of an interventional treatment is angioplasty – opening blocked arteries using a tube and a small balloon. However, a common complication of angioplasty is restenosis, a re-narrowing or blockage of an artery at the same site where an angioplasty treatment has taken place. Stenting, brachytherapy, and most recently, placement of drug-eluting stents, have been shown to be effective in reducing restenosis. This talk will give an overview of the materials issues related to reducing restenosis. Examples of coatings research and development issues from a brachytherapy device based on 32P, will be given, with a focus on how materials engineering can solve complex manufacturing issues.

Dr. Janet Hampikian is an Associate Professor in the School of Materials Science and Engineering at the Georgia Institute of Technology, Atlanta, Georgia. She is an Inductee into the 2004 SoE Academy of Engineers. She received her B.S. Chemical Engineering in 1983, M.S. Metallurgy in 1986, and Ph.D. Materials Science in 1990, all at the University of Connecticut.