Overview

- **Introduction**
 - Clients
 - Project Objective
 - Previous Work
 - Patents

- **Optimal Design**
 - Measuring Devices
 - Optical System
 - National Instruments Devices
 - Computer Program and Display

- **Budget**

- **Timeline**

- **Conclusion**
Clients

- Dr. John D. Enderle
 - Program Director, Biomedical Engineering, University of Connecticut

- David Kaputa
 - Biomechanics Laboratory Instructor
Project Objective

Force Measurement System
- Force Plate & Platform
- Footswitches

Optical System
- Two Digital Video Cameras

National Instruments Devices
- Convert Analog Data to Digital (Force Measuring System)
- Voltage Source for Force Measuring Device
- Image Acquisition via S-video Cable from Two Video Cameras

LabVIEW® 8.0 & Vision Builder for Automated Inspection
- Process and Display Digital Data from Force Measuring Systems
- Process and Display Images from Two Video Cameras
Previous Work

Foot Pressure Device
- Insoles
 - Dynamic Weight Transfer and Local Pressure Concentrations

Force Plates
- Ground Reaction Forces
- Vertical & Shear Forces
- Center of Pressure

Motion Systems
- Video Motion Systems
 - Measure joint angle and acceleration

F-Scan® System
www.tekscan.com

4060-NC Force Plate Series
www.bertec.com

Peak Motus
www.vicon.com
Patent Examples

- 6,997,882 6-DOF subject-monitoring device and method – Parker, et al.
 - Methods & Devices Using Accelerometer

- 4,631,676 Computerized video gait and motion analysis system and method – Pugh, James W.
 - Computerized Video & Motion System
Force Plates

- A force plate is a device that measures the ground reaction forces exerted by a subject as they step on it during gait.
 - Top plate
 - Force transducers at each corner

- Force plates allocate the measurement of both vertical and shear forces, as well as the center of pressure for the subject throughout gait using
Load Cells

- Four Thames Side-Maywood 350a strain gauges/load cells that were previously purchased by the University

- Strain gauge transducers employ four strain gauge elements electronically connected to form a Wheatstone bridge circuit
The force plate and platform will be made out of a material that is relatively light weight, durable, strong, and cost-efficient.

- Top Plate – 6061 Aluminum Alloy
- Bottom Plate & Platform – 304L Stainless Steel

Mechanical Properties of 6061 Aluminum Alloy

<table>
<thead>
<tr>
<th>Condition (Temper Designation)</th>
<th>Tensile Strength (MPa)</th>
<th>Yield Strength (MPa)</th>
<th>Ductility (%EL in 50 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Treated (T4)</td>
<td>240</td>
<td>145</td>
<td>22–25</td>
</tr>
</tbody>
</table>

Mechanical Properties of 304L Stainless Steel

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength (MPa)</td>
<td>500</td>
</tr>
<tr>
<td>Compression Strength (MPa)</td>
<td>210</td>
</tr>
<tr>
<td>Proof Stress 0.2% (MPa)</td>
<td>200</td>
</tr>
<tr>
<td>Elongation A5 (%)</td>
<td>45</td>
</tr>
<tr>
<td>Hardness Rockwell B</td>
<td>92</td>
</tr>
</tbody>
</table>
Footswitches

- Footswitches are a convenient and inexpensive way of obtaining temporal measurements during gait.

- Typical measured parameters include:
 - Stance and swing times
 - Single limb support
 - Gait cycle duration

- FSR switches are used to construct the footswitches
 - 2 layers of plastic with printed circuit on inner surfaces
 - Applied pressure creates a switch closure resulting in a resistive electrical circuit
 - Resistance decreases as more pressure is applied resulting in a decrease in the voltage output
NI devices

- **PXI-1031:**
 - Combine 4-slots PXI
 - Wide range of applications
 - Accept 3U PXI and compact PCI module

- **PXI-1411:**
 - Color or monochrome acquisition
 - One external trigger/digital I/O line
 - Transfer rates up to 132 Mbytes
NI devices

- SC-2345:
 - Signal conditioning for DAQ system
 - 16 analog inputs
 - Provide up to 300v

- PXI-6040E:
 - Data acquisition device
 - Analog and digital triggering
 - 12 to 16 bit resolution
Optical system

- Two digital video cameras (Sony Handycam DCR TRV27)
 - Provide 3D image
 - Instantaneous record of the markers movement
 - Convert and record an analogue NTSC video source to digital video
 - MPEG movie EX mode: in which it will allow us to record uninterrupted to the full capacity of the memory stick media
Computer Program & Display

- Force Signal Processing
 - LabVIEW® 8.0

- Footswitch Signal Processing
 - LabVIEW® 8.0

- Optical System
 - LabVIEW® 8.0
 - Vision Builder for Automated Inspection
Optical Display

3D Optical

Measurement Display

Position Graph

Velocity Graph

Force

Acceleration Graph

Video Image

![Video Image](image-url)

<table>
<thead>
<tr>
<th>Angle 1</th>
<th>Angle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Angle 3</td>
<td>Angle 4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Angle 5</td>
<td>Angle 6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Velocity</th>
<th>Average Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Laboratory Layout

Counter w/ Cabinets (254 in. X 34 in.)
Desk (34 in. depth)
Russell Traction Set-up (111 in. X 36 in.)
Table (144 in. X 60 in.)
Door w/ Frame (76 in. wide)
147 in.
65.5 in.
109 in.
96 in.
Camera 2
Computer System
National Instruments Devices
Tensile Testing Machine
Sink
Walking Path 96 in. Length
White Screen
Russell Traction Set-up (111 in. X 36 in.)
Table (144 in. X 60 in.)
Budget

<table>
<thead>
<tr>
<th>Items</th>
<th>Required</th>
<th>Purchase</th>
<th>Retail (each)</th>
<th>Est. Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Cameras (2)</td>
<td>2</td>
<td>0</td>
<td>$350-10,000</td>
<td>$0</td>
</tr>
<tr>
<td>Camera Tripods (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sony VCT-870RM Remote Control Tripod</td>
<td>2</td>
<td>1</td>
<td>$197</td>
<td>$197</td>
</tr>
<tr>
<td>Reflective Ball Markers (1 set = 30 passive)</td>
<td>1</td>
<td>1</td>
<td>$300</td>
<td>$30</td>
</tr>
<tr>
<td>Computer Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Instruments LabVIEW 8</td>
<td>1</td>
<td>0</td>
<td>$995-4,299</td>
<td>$0</td>
</tr>
<tr>
<td>NI Vision Builder AI</td>
<td>1</td>
<td>0</td>
<td>$1,495-1,995</td>
<td>$0</td>
</tr>
<tr>
<td>Computer, Monitor, Keyboard, Mouse</td>
<td>1</td>
<td>0</td>
<td>$3,000</td>
<td>$0</td>
</tr>
<tr>
<td>Force Plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force Transducers</td>
<td>4</td>
<td>0</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Metal Plate</td>
<td>1</td>
<td>1</td>
<td>$667.50</td>
<td>$667.50</td>
</tr>
<tr>
<td>Platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material - 304L Stainless Steel</td>
<td>1</td>
<td>1</td>
<td>$270.65</td>
<td>$270.65</td>
</tr>
<tr>
<td>Footswitches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Womens</td>
<td>1</td>
<td>1</td>
<td>$195</td>
<td>$195</td>
</tr>
<tr>
<td>Mens</td>
<td>1</td>
<td>1</td>
<td>$195</td>
<td>$195</td>
</tr>
<tr>
<td>Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Instruments PXI-1031</td>
<td>1</td>
<td>0</td>
<td>$995</td>
<td>$0</td>
</tr>
<tr>
<td>National Instruments PXI-6040E</td>
<td>1</td>
<td>0</td>
<td>$1,399</td>
<td>$0</td>
</tr>
<tr>
<td>National Instruments SCC-2345</td>
<td>1</td>
<td>1</td>
<td>$245</td>
<td>$245</td>
</tr>
<tr>
<td>SCC-SG24 Module for Load Cells</td>
<td>2</td>
<td>2</td>
<td>$295</td>
<td>$590</td>
</tr>
<tr>
<td>SCC-SG04 Module for Footswitches</td>
<td>1</td>
<td>1</td>
<td>$245</td>
<td>$245</td>
</tr>
<tr>
<td>National Instruments PXI-1411</td>
<td>2</td>
<td>0</td>
<td>$1,095</td>
<td>$0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>$200</td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td>$2,835.15</td>
</tr>
</tbody>
</table>
Timeline

- Initial meeting (week one)
- Optical system tested and completed by week six
- Force measurement system completed by week twelve
- Lab view program completed in conjunction with device testing and completion dates
- Combine and test entire project by week thirteen
- Complete final lab report by week fourteen
- Demonstration and presentation in week fifteen
Conclusion

Gait Analysis Laboratory

- Incorporate a hands-on approach to gait analysis through the use of an integrated:
 - Force Plate & Platform
 - Footswitches
 - 2 Digital Camcorders
 - National Instruments Equipment
 - Interactive National Instruments LabVIEW® Software Program

- Students will gain a deeper understanding of gait analysis through the use of 2 different types of measuring devices that are not currently available in the Biomechanics lab.

- Design fulfills the upgrade request for the Biomechanics gait analysis lab in providing a more robust example of biomechanics applications and bridging the gap between the classroom experience and clinical applications.
Acknowledgements

- University of Connecticut
 - Dr. John D. Enderle, Client and Advisor
 - David Kaputa, Client and Advisor
 - Christopher Liebler, Advisor

- National Instruments
 - Bharat Sandhu, Field Engineer
Questions ?