Orthodontic Wire Mechanical System Tester

Max Feldman • Scott Michonski • Bethany Lepine
Overview

- Introduction
 - Client Description
 - Objective
 - Previous Work / Patents
- Optimal Design
 - Design Overview
 - Sensors
 - Linear Slides
 - Motors
 - Electrical
 - LabVIEW
- Budget
- Timeline
- Conclusion
Client Description

- Dr. Michael Holbert
 - UConn Health Center School of Dental Medicine
 - Leads field of Biomechanics Research
 - Researching biomechanic principles and how they effect tooth movement
Objective

- To create a device to measure the mechanical forces and torques in three dimensions applied by an orthodontic wire in a relevant configuration.
- To design a user-friendly interface which would not require prior knowledge to manipulate.
- To produce an apparatus with variability that would be relevant to various testing capacities.
Previous Work / Patents
Optimal Design: Overview

- Components
 - Sensors
 - Slides
 - Motors
 - Electrical
Optimal Design: Sensors

- ATI Industrial Automation- Nano17
 - Force and Torque in Three Axes
 - Strain Gauge Technology
 - Silicon Strain Gauges
 - Flexing Beams
 - Miniscule Size
 - 17mm Diameter
 - 9.1 Grams
 - Superior Resolution
 - Force: +/- 1/320 N
 - Torque: +/- 1/64 N*mm
Optimal Design: Linear Slides

- Anaheim Automation Positioning Slides
- Two Dimensional Slide with motor attachment
- One Dimensional Slide for vertical motion, also with motor attachment
- Improve precision, accuracy
- Prevents backlash with locking mechanism
Optimal Design: Motors
Optimal Design: Electrical

- Block Diagram:

```
Signal -> Amplifier -> Filter and Conditioning -> DC Offset
```

- Analysis <-> LabVIEW <-> DAQ <-> ADC

- The Circuit:

```
Signal IN -> Amplifier -> Filter and Conditioning -> DC Offset
```

- ADC:
 - Texas Instruments ADS1255IDBT A/D converter
 - 30kHz Sampling Rate
 - 24 Bits of Resolution
Optimal Design: LabVIEW

- **User Controls:**

- **Data Display:**

- **Functionality:**
Orthodontic Mechanical System Tester: Projected Expenses

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model</th>
<th>Description</th>
<th>Price</th>
<th>Unit</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaheim Automation</td>
<td>LS100-06-A-N-4E-B</td>
<td>3 Axis Slide Motor System</td>
<td>$3,040.00</td>
<td>each</td>
<td>1</td>
<td>$3,040.00</td>
</tr>
<tr>
<td>Anaheim Automation</td>
<td>485SD9TB</td>
<td>RS-232 to RS-485 Data Converter</td>
<td>$140.00</td>
<td>each</td>
<td>1</td>
<td>$140.00</td>
</tr>
<tr>
<td>SunStone Circuits</td>
<td>E2 Service- 2 Layer</td>
<td>PCB Assembly</td>
<td>$250.00</td>
<td>each</td>
<td>1</td>
<td>$250.00</td>
</tr>
<tr>
<td>ATI Industrial Automation</td>
<td>N/A</td>
<td>12-Pin Amphenol Connector</td>
<td>$50.00</td>
<td>each</td>
<td>2</td>
<td>$100.00</td>
</tr>
<tr>
<td>ATI Industrial Automation</td>
<td>Nano 17</td>
<td>6-Axis Force/Torque Transducer</td>
<td>$3,850.00</td>
<td>each</td>
<td>2</td>
<td>$7,700.00</td>
</tr>
<tr>
<td>DigiKey</td>
<td>296-15743-6-ND</td>
<td>Texas Instruments Low Noise 24-bit ADC</td>
<td>$11.91</td>
<td>each</td>
<td>12</td>
<td>$142.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Misc Circuit Elements</td>
<td>$100.00</td>
<td></td>
<td>1</td>
<td>$100.00</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>$11,472.92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Timeline

By Mid-February
- Create LabVIEW interface, test sensors (Max)
- Test, assemble and attach motors (Scott)
- Create mechanical apparatus, machine parts, attach slides (Bethany)

By Mid-March
- Assemble entire device
- Test LabVIEW with various working parts
- Do trial runs
Conclusions

- This design provides the ability to test in three dimensions
- LabVIEW interface will not require prior knowledge to use
- Accuracy and precision through use of slides, motors reduce human error
- Completely new design from original
- Allows for variations in testing for numerous experimental applications
- User-friendly and exceeds the needs of the client