Orthodontic Wire Mechanical System Tester

Bethany Lepine
Scott Michonski
Max Feldman
Introduction: Client

- Dr. Michael Holbert
 - UConn Health Center School of Dental Medicine
 - Leads field of Biomechanics Research
 - Researching biomechanics principles and how they effect tooth movement
Introduction: Objective

- To create a device to measure the mechanical forces and torques in three dimensions applied by an orthodontic wire in a relevant configuration.
- To design a user-friendly interface which would not require prior knowledge to manipulate.
- To produce an apparatus with variability that would be relevant to various testing capacities.
Introduction: Previous Work/Patents

- Other than the original device, there has been no previous work or patents dealing with wire forces on the mouth.
- The original device was not accurate and needed to be completely rebuilt.
Device Features

- Motion in three dimensions
 - Precise to .0009mm
- Force and Torque sensing in three dimensions in two locations
 - Precise to 1/320N, 1/64 N*mm
- User friendly Interface
Design

- Major Components:
 - Mechanical
 - Electrical
 - Software
 - Peripherals
 - Sensors
 - Linear Slides
Design: Mechanical

- Vertical Base slide setup
- Sensor Attachments
Design: Software

• Features:
 - Visual, User Friendly
 - Ability to simultaneously control motion in all three dimensions
 - Real time input and display from sensor
 - Comprehensive data organization and storage
 - Standalone application (no LabVIEW required)
Design: Software
Design Electrical

- PC board from PCBExpress
- RS485 and USB 6210 communication
Design: Sensors

- ATI Industrial Automation- Nano17
 - Force and Torque in Three Axes
 - Miniscule Size
 - 17mm Diameter
 - 9.1 Grams
 - Superior Resolution
 - Force: +/- 1/320 N
 - Torque: +/- 1/64 N*mm
Design: Linear Slides

- Anaheim Automation LS100 Series
- Three dimensional configuration
- Each slide has 6 in range of motion
Budget

- 2 Sensors $7700.00
- 3 Linear Slides $3616.92
- DC Power Supply $260.00
- Metal from Yarde Metals $488.00
- National Instruments USB 6210 $461.00
- Printed Circuit Board $62.00

- Total estimated costs before machining: $12,587.00
 - Machining costs up to $90 per hour
- Total expenditures LESS THAN $15,000.00
Conclusion

- To conclude the device is functional and all software, mechanical and electrical components have been completed and are operational
- At this point in time the client is left with the option of improving experimentation to better meet their satisfaction.
Acknowledgements

- Dr. Michael Holbert
- Dr. Andrew Kuhlberg
- Dr. Donald Peterson
- Michael Brault from Ultimate NiTi
- Ray, Ultimate machinist
- Joe Caron, UCHC fabrication shop machinist
- Rich Bonazza and Serge Doyon, UConn machine shop
- Dr. John Enderle
- Bill Pruehsner
Unfortunately I had extenuating circumstances that kept me from being able to be here today. Thank you for your understanding!

-Max