The ATPC-X42
All-Terrain Power Chair

Niaz Khan
Selome Mandefro
Alex Mann
Vikram Shenoy
Overview

- Introduction
- Objective
- Specifications
- Division of Labor
- Design
 - Mechanical
 - Electrical
 - Software
- Budget
- Conclusion
- Acknowledgements
Introduction

- Client: Annalee Hughes
 - Age: 10
 - Height: 56”
 - Weight: 62 lbs
 - Bright and Adventurous
 - Has Cerebral Palsy
 - Has very poor trunk strength and leans forward while sitting
What is Cerebral Palsy?

- Neuromuscular disorder often caused at birth
- No known cure
- Characterized by involuntary muscle movements
- Motor control drastically reduced
- Causes muscle deficiencies such as in the trunk
- Mental disabilities may be apparent
Objective

- Design an all-terrain power chair with a low center of gravity that allows Annalee to travel on her property without her or her family having to be concerned with her safety.

- Annalee has tipped her current power chair and does not have the strength to get herself back up.
Specifications

- The chair will have:
 - A low center of gravity
 - Sufficient ground clearance
 - Large wheels to handle rough terrain
 - A right-handed joystick controller
 - A seat belt and five-point harness
 - A tilt sensor with alarm system
 - An auto-actuating seat that complements the slope
 - Portability for access through doorways
Division of Labor

- **Niaz Khan**
 - Electrical Design
 - Build Tilt Sensor with Alarm System
 - Seat Auto-Actuation
 - New Circuit Integration

- **Selome Mandefro**
 - Software Design
 - Tilt Sensor Code
 - Integration of Tilt Sensor with Auto-Actuator
 - Reprogramming of Joystick Controller
Division of Labor, cont.

- Alex Mann
 - Part Fabrication
 - Spacers, Seat Mount, Back Mount, Footrest, Casters
 - Part Integration with Chassis

- Vikram Shenoy
 - Mechanical Design
 - Design of New Components (Spacers, seat Mount, Back Mount, Footrest, Front Casters)
 - Part Analysis and Simulation
Mechanical Design

- Existing Components
 - chassis of Quickie S626 Power Chair
 - battery cage
 - arm rests
 - anti-tip wheels
Mechanical Design, cont.

- **New/Modified Components**
 - seat mount – accommodate a wider seat
 - seat base plate
 - front casters – hold wider front tires
 - larger front and rear tires – increase chair stability
 - larger seat and seat back – allow Annalee to grow into chair
 - footrest – enable easy access into the chair

- Autodesk Inventor is being used for design and analysis
Completed Work:

- Majority of CAD in Autodesk Inventor
- Design of spacers, front casters, seat base plate
- Fabrication of spacers
Mechanical Design, cont.

- **Work in Progress:**
 - Design of seat back mount
 - Design of footrest

- **Next Steps**
 - Finite element analysis of each part
 - Center of gravity analysis
 - Simulations of different scenarios
 - Fabrication of remaining parts
 - Reassembly of power chair
Electrical Design

- Components
 - Joystick controller
 - Two 12V batteries
 - Charger
 - Kill switch
 - Seat actuator
 - Tilt Sensor
New Additions:

- Implementation of a tilt sensor with alarm system
 - Warn Annalee when approaching slopes too steep
 - Increases safety of the device
- Automatic seat actuation complementary to tilt sensor feedback
 - Will auto-adjust seat positioning relative to the hill
 - Helps maintain proper posture while the chair is in operation
Software Design

- Components
 - Joystick controller
 - Power Module
 - Tilt Sensor
 - Auto-Actuator
Software Design, cont.

- Work completed so far:
 - Code worked on for tilt sensor

- Work to be completed:
 - Integrate tilt sensor with auto-actuator
 - Reprogram the joystick and power module to account for modifications in the device
Budget Overview

- Total Budget: $1300
- Total Spent, Fall 2009: $450
- Expected Costs, Spring 2010: $330
- Total Expected Cost: $780
Acknowledgements

- Dr. John Enderle
- James Paolino
- Dave Kaputa
- Don Hoerman
- Kerrie Wenzler
- Susan Lucek
- Annalee Hughes
- John Hughes
- Mary Ann Tuttle
- Rick Way