Freely Adjustable and Accessible Keyboard and Joystick

Sponsored by the National Science Foundation

Team 6:
- Stephen Heussler and Nolan Skop
Outline

- Introduction
 - Background
 - Problem
 - Solution
 - Previous work done by others

- Project Description
 - Design
 - Materials

- Budget

- Conclusion
Client Background

- Sam from Hampton, CT
- 10 year old 5th grade student
- Wants to fit in with other students
- Athetoid Cerebral Palsy
 - Non-verbal
 - Requires electric wheelchair
 - Typing is primary means of communication
Athetoid Quadriplegia

- Permanent damage of cerebellum or basal ganglia
- Affects all limbs
 - Involuntary Movements
 - Difficulty in Preciseness
 - Difficulty with speaking and other motor functions
Problem with Standard Keyboard

- Horizontal position
 - Affects positioning of client’s hands
- Keys too small
 - Multiple keys hit at a time
 - Damage to the keys
- Not portable
- Slows down speed and efficiency of typing
- Not Durable
Problem with Standard Mouse

- Difficult to grab
- Requires fine movements of hands and fingers
- Highly sensitive
Solution

- New Keyboard Design
 - Allow Sam to type faster and with greater ease
 - Reduce stress on hands and fingers
- Replace Mouse with Joystick
Patent Research

FrogPad™
- Sits horizontal to surface
- Small Keys
- Multiple characters per button - not user friendly
Project Design

Pressing Key(s) → Switch Triggered, Current Flows → Microprocessor

Keyboard Controller → Microprocessor Memory Buffer → Filter

Operating System

System Level Command
Command
Content
Project Design cont’d.

- New Keyboard
 - Vertical Position
 - Large Keys
 - Simplified Layout
 - High Wear Resistance
 - Portable
Project Design cont’d.

- Joystick
 - M212 Multi Axis Joystick (PQ Controls)
 - Potentiometric Displacement Joystick
 - Converts mechanical displacement to electrical output
Materials

- Keyboard
 - Plastic Parts
 - Rubber Dome Switches
 - PCB
 - Electrical Components
 - Bluetooth Connector
- Joystick
 - Aluminum
 - Glass Reinforced Nylon
Budget

<table>
<thead>
<tr>
<th>Component</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom Built Plastic Parts</td>
<td>$200.00</td>
</tr>
<tr>
<td>PCB</td>
<td>$70.00</td>
</tr>
<tr>
<td>Key Matrix</td>
<td>$50.00</td>
</tr>
<tr>
<td>Various Electric Components</td>
<td>$50.00</td>
</tr>
<tr>
<td>Bluetooth Adaptors</td>
<td>$75.00</td>
</tr>
<tr>
<td>Batteries</td>
<td>$10.00</td>
</tr>
<tr>
<td>Total</td>
<td>$455.00</td>
</tr>
</tbody>
</table>

Available budget is $750 provided by the National Science Foundation.
Conclusion

- Future Keyboard and Joystick
 - Faster, easier means of communication
 - Less strain on clients arms
 - Portable for classroom transport
 - High wear resistance- long lasting
 - LED backlighting
 - Custom built within budget