Team 1: The S-90 Go-Kart

By
James Paolino
Tarek Tantawy
Alex Jadczak
Eric Leknes
The Client

- Sean Stenglein
 - 10 years old
 - 55 pounds
 - Under 60 inches tall
 - Suffers from CP
 - Active life
 - Normal mental abilities
Cerebral Palsy

- Neuromuscular disorder
- Muscles involuntarily activate
- Fine and gross motor skills hindered
- Often caused at birth
- Mental capacities may be hindered
Challenges

- One handed control system
- Remote control system
- Maintaining proper body position during operation
- Safety factors
 - Limiting the go-karts performance
 - Fail safes
 - Etc.
Reasons for Go-Kart

- Client enjoys the outdoors and anything relating to driving
- Allows client to interact with the world
- Challenges the client
- Release from daily hardships
Mechanical Aspects

- Unique Designs
- 2-part chassis
- Independent front, semi independent rear suspension
Capabilities

- The go-kart will be able accelerate quickly to a pre-programmed top speed

- 10” disk brake allows for fast stopping

- Powerful steering motor and high amperage controls allow for fast, reliable steering
Two types of components
- Inputs
- Outputs

Responsible for sensing all of the user inputs and relaying information to the software

Responsible for converting the outputs from the software into useful tasks
Inputs

- 3 overall control systems
 - Remote control
 - Joystick
 - Steering wheel with pedals
- Kill switch and other buttons
- Feedback from various systems
 - Position sensing
 - Safety information
- All sources of physical input are relayed to the microcontroller for processing
Outputs

- **Steering**
 - Gear motor connected to rack and pinion
 - H-bridge control for left/right
- **Throttle**
 - Servo motor control
 - Takes PWM from microcontroller
- **Braking**
 - Gear motor
 - H-bridge control for brake on/off
- **Forward/Reverse shifting by servo control**
Software Control

- Takes inputs from electrical systems, interprets the data and adjusts outputs accordingly.

- Two main loops:
 - Primary main loop
 - Emergency main loop

- Primary loop controls normal operation of vehicle.

- Emergency loop dedicated to preset routine of stopping and shutting down the vehicle.
Specific Requirements

- Special 90 degree seat:
 - Seat must be interchangeable so test drivers can operate the go-kart
 - Seat needs to move back as the client grows into the go-kart – linear actuator

- Head operated kill-switch

- Numerous Fail-safes: auto kill switch, auto brake, safe electronics shutdown
Division of Tasks

1. James:
 1. Mechanical design and implementation
 2. Engine and drive systems

2. Eric:
 a. Software controls
 b. Electrical systems

3. Alex:
 a. Electrical systems
 b. Control system interface with mechanical systems

4. Tarek:
 a. Mechanical design and implementation
 b. Seating system
Costs

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>$350</td>
</tr>
<tr>
<td>Control Systems</td>
<td></td>
</tr>
<tr>
<td>Servo and Gear motors</td>
<td>$250</td>
</tr>
<tr>
<td>Position Sensors</td>
<td>$100</td>
</tr>
<tr>
<td>Electronics and Software</td>
<td></td>
</tr>
<tr>
<td>Electronic Components</td>
<td>$100</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>$50</td>
</tr>
<tr>
<td>Batteries</td>
<td>$150</td>
</tr>
<tr>
<td>Total:</td>
<td>$2,000</td>
</tr>
<tr>
<td>Free Materials</td>
<td>$4,692</td>
</tr>
</tbody>
</table>
Conclusion

- Go-Kart provides the client with fun driving experience he desires
- The vehicle is safe
- Three methods of control allow the client to use the go-kart right away and learn other skills
- Design is cost effective
- Go-Kart designed from the ground up with special focus on the needs of the client