The Joe–Kart
BME 4900 Final Presentation

Team 5
Morgan Templeton
Marek Wartenberg
Michael Fitzpatrick
Overview

- Introduction
- Project Design
 - Specifications
 - Subunits
- Progress Through First Semester
- Work to be Completed
- Division of Labor
- Status of Budget
- Acknowledgements
The Client

Joey Toce

- 6 years old
- 42 inches tall
- 35lbs
- Suffers from Mixed-Type Quadriplegic Cerebral Palsy with a second diagnosis of Global Apraxia
- Lives in Southington, CT
Project Overview

Purpose
- To design and build a modified vehicle which Joey can operate given his limited motor control
- Provide an alternate source of recreational mobility
- Increase time outdoors and out of wheelchair
- Teaching tool for motor control development
- Have fun!
Specifications

- Battery Operated
 - Motor
 - Steering
 - Braking

- Dual Controls
 - Dashboard
 - Remote

- Adjustable Custom Seat
 - Trunk Support
 - Leg Straps
 - Head Restraint

- Kill Switch Override

- Roll Cage

- Left Hand Oriented
Project Design

Subunits
- Mechanical Systems
 - Chassis
 - Seats and Harness
 - Steering
 - Braking
 - Transmission

Electrical
- Batteries
- Control Box
- Feedback systems
- Control Systems
- Methods of Control
Chassis

- 2 seat chassis acquired from Northern Tool
- Stripped and modified
 - Will not use seat, rear wheels, or steering linkage
 - Installing transmission box and differential rear axle
 - Installing rack and pinion system for steering
 - Installing disc brake
Seats and Harness
- Standard bucket seat for passenger
- Custom Seat for Joey
 - Head and neck support
 - Trunk support
 - Velcro leg straps
 - On adjustable track
 - 5 point harness
Steering

- Dayton 1L469 Gear Motor will power rack and pinion system
- Rack and pinion connected to modified stock tie rods to turn wheels

Dayton 1L469 Gear Motor

Wheel Bracket Assembly
Braking

- Dayton 1L474 Gear Motor will operate braking system
 - Comet DC series mechanical brake caliper
 - 10” brake disc
Transmission

- Electric C40-300 Magmotor will power differential axle through gear reduction system
- Preliminary 7.5:1 gear ratio
 - Two step reduction; 2.5:1 then 3:1
Electronics

- Batteries
 - 4 12V deep cycle marine batteries
 - 2 in series to power 24V Magmotor
 - 1 to power braking system
 - 1 to power steering system

- Control Box
 - Housing for wires and electric components
 - Shields components from environment
Feedback systems

- Will be implemented to gauge degree of steering and braking
- Celesco CLP series linear potentiometers
 - 4” stroke length for braking system
 - 6” stroke length for steering system
 - Provide variable voltage as feedback mechanism

Celesco CLP series linear potentiometer
Electronics

Control Systems

- Motor Controllers will take PWM input from receiver and drive motors for steering, braking, and transmission accordingly
 - IFI Victor 883 Motor Controller for steering and braking
 - 4QD–300 regenerative speed controller for transmission

IFI Victor 883

4QD–300
Methods of Control

- Dashboard
 - 2 push buttons: start and stop
 - Sliding potentiometer for steering

- Remote
 - Dual single axis thumb sticks: acceleration and steering
 - Kill switch override
 - Always overpower dashboard controls
 - Donated by Miratron, Inc.
Progress Through First Semester

- **Acquired:**
 - Chassis
 - Speed controllers
 - All motors
 - Rear axle and wheels
 - Linear potentiometers

- **Learned design software**
 - CAD
 - PCB design and Multisim
 - C Programming

- **Designed:**
 - Transmission box
 - Adjustable seat tracks
Work to be Completed

- Purchase the remaining components
- Fabricate transmission box
- Install:
 - Differential axle
 - Steering system
 - Braking system
 - Seats
 - Dashboard controls
- Configure electronics
- Test and revise all systems
Division of Labor

- Morgan:
 - Remote and receiver
 - Dashboard controls
 - Seat
- Mike
 - Steering system
 - Braking system
- Marek
 - Transmission system
 - Chassis modifications
Starting Budget: $3,000
Purchased: ~1,500
- Chassis – $607.07
- IFI Motor Controllers – $295.30
- 1 Celesco Linear Potentiometer – $298.00
- 11” Rack and Pinion – $110.87
- Disc Brake and Caliper – $149.98

Donations:
- C40–300 Magmotor, 4QD–300 Speed controller, 1 Celesco linear potentiometer, differential axle, rear wheels, Dayton gear motors
- Donations Valued at approximately $2,000

Remaining Budget ~ $1,500
Acknowledgments

- The Toce Family
- James Paolino
- Rod Seely – Miratron, Inc.
- Barry Singer – Celesco, Inc.
- Dr. John D. Enderle
QUESTIONS???