Team 6

[E.V.R.T]
endovascular valve resection tool

TEAM MEMBERS:
Chris Guay
Josh O’Brien
Catherine Yee

SPONSOR:
Dr. Wei Sun
Background

- Aortic stenosis is the most common valvular heart disease in the western world.
 - Effects 2% of the population over 65, 3% of population over 75, and 4% of total population over 85.
- Endovascular procedures reduce risk of severe complications of major surgery.
 - Especially important in patients with advanced age or co-morbidities.
Background

- Project is designed to cut away calcified or diseased valve leaflet tissue from the aortic root.
- Current procedures are limited in their ability.
 - Current minimally invasive procedures only push the original tissue towards the aortic wall using a stent.
 - Limits bloodflow.
 - Open heart surgery is currently required to remove the old tissue.
Requirements

- Must consist of a highly flexible shaft that can be snaked through the femoral artery before reaching the aorta.
 - Must fit within a 24F catheter (7.6 mm).
 - Upon reaching the aorta, must expand to ~3 times as large to be effective.
- Automated opening and closing of the device.
- Hard to maneuver once in aorta.
 - Cutting force must be strong enough to cut through hardened leaflets with limited leverage.
Previous Works

- No relevant patents or current products in the USA.
- Research teams since 2005 have used a variety of techniques in attempts at a less invasive procedure.
 - High pressured water
 - Lasers
 - Metal blades
- Hauke et al. in Germany created an open heart procedure using a collapsible metal blade.
Design

- Blade and Backplate
- Shaft and Motor
- User Controls
- 5:1 Scale
Cutting Assembly

- Blade and backplate machined out of .32 in thickness 1095 steel (spring steel).
 - Allows some flexibility, not as much as Nitinol.
- Each assembly made in 4 pieces to allow more ease during compaction while closing.
- Pieces are bent to their final form, then heat treated.
 - Heated to 1400° F for 1 hour, quenched, then annealed at 700° for another hour.
Shafts

- Nested shafts used.
 - Allows rotation of cutting blade, while backplate and distal end do not move.
 - Polished and greased to minimize friction.
- For our model, flexible Nitinol shaft unnecessary.
 - Aluminum shafts used to minimize costs.
Motor and Transmission

- **Blade motor – NEMA 23 Stepper Motor.**
 - Allows blade rotation at 80-100 RPM.
 - 2” spur gear to translate motion to blade.

- **Stage motor – NEMA 17 Stepper Motor.**
 - Allows stage movement approx. 4 inches/min.

- **Parker Automation #008-3686 Linear Stage.**
 - Allows opening/closure of device.
User Controls

- Tool is operated via a computer using LABVIEW 9.0.
- Graphical User Interface allows simple control.
 - User can set linear position of blade in relation to backplate.
 - Set the blade in motion.
 - Set blade speed.
Tissue analog was used to test. Aluminum rings used with sample sutured to it. Blade exhibited reasonable cutting speed despite limitations placed on it by the motor.
Budget

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Materials</td>
<td>~$150</td>
</tr>
<tr>
<td>Shaft Collars</td>
<td>~$30</td>
</tr>
<tr>
<td>Spur Gears</td>
<td>~$60</td>
</tr>
<tr>
<td>Motor/Linear Stage</td>
<td>FREE</td>
</tr>
<tr>
<td>Miscellaneous/Shipping</td>
<td>~$50</td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>$286.88</td>
</tr>
</tbody>
</table>
Looking Forward

- What could be next for EVRT?
- Scaled down to actual size.
- Machined out of Nitinol.
 - Allow for proper folding of the blade.
- Flexible shaft.
- Linear actuators instead of linear stage.
Thanks

- Dr. John Enderle
- Dave Kaputa
- Keiwei Li
- James Paolino
- Dr. Wei Sun
- Dr. Bi Zhang
- Special thanks to Serge, Pete, and the rest of the machine shop staff!
Questions?