All-Terrain Power Chair
Team 10

Prince Alam
Marcus Chapman
Mathew Kozachek

Project for Nathan Lamb
Client Contact:
Janice M. Lamb
142 Barnes Road
Stonington, CT
860-535-3364 (Home) / 860-460-1394 (Mobile) / 860-245-5699 (Office/Fax)
Janice.Lamb@linde.com
Introduction

- About Nathan (client)
- Purpose
- Products and Patent
- Objective
- Mechanical Components
- Electrical Components
- Software
- Budget
- Conclusion
- References
- Question period

Figure 1: Nathan at Plymouth Rock
The Client

Nathan Lamb

- 11-year-old boy
- Lives in Stonington, CT
- Adventurous and playful
- Challenges:
 - Autistic
 - Cognitively and physically challenged
 - Spina bifida
 - Shunt in skull to drain fluid buildup
 - Paraplegic
 - Excessive fidgeting
- Capable of using left hand for activities

Figure 1: Nathan and his sister
Purpose

Current Problem:
> Nathan can not enjoy all outdoor activities with his family and friends due to limitations of his current devices
> Most people find Nathan’s devices exhausting or hard to use

Intended Solution:
> Design Nathan an intuitive all-terrain power chair
 • Allows him to participate in more outdoor activities
 • Provides him more independence
 • Increases safety
Products and Patent

- Planet Mobility’s X4-Extreme 4 wheel drive power chair
 - $16,995
- UConn’s ATPC X42 – Spring 2010
 - $4,400 (including estimated costs of donations
- Both, as well as other similar products, utilize joystick control, oversized wheels, ergonomic seats, and suspension.

- An early patent:
 - Adoof Hammer filed the patent in 1998
 - Utilized combustion engine
 - Controlled by dual levers and had emergency steering wheel
Objective

- Design power chair to suit Nathan
- Implement Safety Measures
- Easy transportable, lightweight design
- Allow for use along trails & beaches
- Accommodate for growth of the client
- Have Fun
Mechanical Components

- Frame/Chassis – lightweight, modular, rugged
- Wheels – durable, all-terrain
- Suspension – comfort and grip
- Mechanical brake – safety
Electrical Components

- Joystick – easy to control
- Power supply – segregated for durability, safety, and longevity
- Hall Effect Sensors – feedback for wheelspin
- Microcontroller – brains of the chair
- Motors – 24V DC motors
Software

- Embedded C in microcontroller
- Feedback from wheels for 4-wheel-drive system
<table>
<thead>
<tr>
<th>Part</th>
<th>Estimated Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Batteries (2)</td>
<td>250</td>
</tr>
<tr>
<td>Other Batteries</td>
<td>40</td>
</tr>
<tr>
<td>Suspension</td>
<td>200</td>
</tr>
<tr>
<td>Wheels</td>
<td>500</td>
</tr>
<tr>
<td>Motors (4)</td>
<td>1000</td>
</tr>
<tr>
<td>Seat</td>
<td>2000</td>
</tr>
<tr>
<td>Charge Inverter</td>
<td>500</td>
</tr>
<tr>
<td>Joystick</td>
<td>50</td>
</tr>
<tr>
<td>Sound Circuitry and Speaker</td>
<td>100</td>
</tr>
<tr>
<td>Misc. Electronics</td>
<td>100</td>
</tr>
<tr>
<td>Chassis/Frame</td>
<td>300</td>
</tr>
<tr>
<td>Misc. Mechanical</td>
<td>100</td>
</tr>
<tr>
<td>Estimated Total:</td>
<td>5140</td>
</tr>
</tbody>
</table>
Conclusion

- This power wheel chair will safely increase Nathan’s mobility and allow him to explore at his own content.
- Nathan’s parents will have less strain caused from wheeling Nathan around.
- This design will be cheaper than alternatives already on the market.
References

2. https://health.google.com/health/ref/Myelomeningocele
Any Questions?