Seizure Monitor: Entrepreneurial Project

12/6/10
Team 23

Katie Cooney
Adam Herman
Adam Markman
OVERVIEW

- Problem Statement
- Background
- Existing Products
- Seizure Monitor Design
 - Components of the Watch
 - Components of the Alarm Clock
 - LabVIEW
- Budget
- Future Work
- Conclusion
- Acknowledgements
- Questions
PROBLEM STATEMENT

- To create a device that is capable of accurately monitoring and detecting seizures in a nonintrusive way.

Who will benefit?
- Patients
 - Better Sleep
 - Logistics
- Caregivers
 - Less Stress
- Physicians
 - More Information
BACKGROUND: SEIZURES

- Prevalence
- Course
 - Aura
 - Tonic Phase
 - Clonic Phase
- Outcome

How can the characteristics of seizures be utilized in enhancing our design?
ACM data from Tonic and Clonic Phases

Tonic Phase

Clonic Phase
CURRENT PRODUCTS

- Medpage ST-2.
 - Dual detection functionality
 - Monitored by the ST-2 microprocessor
 - Prolonged irregular movements result in an alarm being generated by the monitor with a signal transmitted to the alarm pager

- MP5 - Complete System - Bed Motion Alarm for convulsive movement such as Epilepsy Seizures.
 - Not effective for patients under 56 lbs
 - Large bed or heavy mattress requires two sensors
 - Aural detection via microphone

- Another product is the Emfit Nocturnal Tonic-Clonic Seizure Monitor.
 - Best option for small children and small seizures
Advantages of our design over current models

Expected obstacles in implementing this design

Intended solutions to obstacles
SEIZURE MONITOR- WRIST WATCH

Features:
- Velcro strap
- Digital Time Display
- Reasonable Size
- Wireless Communication
- Cheap Manufacturability
- Water Resistance -> Waterproof
WRIST WATCH: WHAT’S BEEN DONE

- Visio Drawings
- Accelerometer signal research
- Dismantled existing watch for parts
Wrist Watch: What we plan to do

- Begin testing of accelerometer
- Gather extensive data on output signals for various motions of the accelerometer
- Design filter appropriately
- Learn to apply surface-mount technology to PCB
Seizure Monitor - Alarm Clock

Features:

- Digital Time Display
- Snooze Button
- Flashing LED Lights
- Speakers
- LED ‘Power’ and ‘battery warning’ Indicators
- Battery Power & Wall Outlet
- Small Size -> Portability
- Wireless Communication
ALARM CLOCK: WHAT’S BEEN DONE

- Visio Drawings
- Parts Ordered
- Bluetooth Communication Research
- Microcontroller Programming Research
ALARM CLOCK: FUTURE WORK

- Dismantle ordered alarm clock
- Program microcontroller
- Design appropriate circuit for placement in alarm component
SEIZURE MONITOR- LabVIEW

- A LabVIEW program will retrieve data about the seizure from the alarm clock
 - The program will log data from the seizure including the date, time duration and severity of the seizure
- The data from the LabVIEW program can be saved and sent to a doctor’s office, PDA, or other mobile device
LabVIEW - What's been Done

- LabVIEW Interface
- Working on the LabVIEW code to read data from a Bluetooth Device and display the desired outputs

LabVIEW - Future Work

- Continue to code the LabVIEW data
 - Create code to read the Bluetooth Device
Future Work

- Focus on completing the watch assembly
 - Install accelerometer
 - Install Surface Mount Bluetooth
 - Install casings if needed
 - Learn C to program the microcontroller
Budget

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freestyle Shark 88</td>
<td>http://www.nextag.com/Freestyle-Shark-88-681556607/prices-html</td>
<td>54.95</td>
<td>1</td>
<td>54.95</td>
</tr>
<tr>
<td>Casio Men's F28W-1 Classic Digital Watch</td>
<td>http://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=Casio+Men%27s+F28W-1+Classic+Digital+Watch&amp;x=0&amp;y=0</td>
<td>11.16</td>
<td>2</td>
<td>22.32</td>
</tr>
<tr>
<td>ACCELEROMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUETOOTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB BOARDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB Boards</td>
<td>www.batchpcb.com</td>
<td>$10 + 2.5/sq. in</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>Alarm Clock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>328.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35% Threshold</td>
<td></td>
<td>442.962</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSION

- The group is currently focusing on completing the watch
 - Need to figure out how to calibrate the accelerometer to detect a seizure
 - Code the microcontroller to relay information from the accelerometer to the alarm clock via Bluetooth
REFERENCES

ACKNOWLEDGMENTS

- Dr. John Bennett
- Dr. Enderle
- Dave Kaputa
- Emily Jacobs
- Marek Wartenberg
- Dr. Peterson
- Amy Smith
- Jacqueline Veronese and ME department
Questions?