Temporomandibular Joint Disorder (TMJD) Diagnostics System

University of Connecticut
Biomedical Engineering
Senior Design Spring 2011

Michael Jorgensen
Mariana Hu
Kerry Semle
Overview

- Introduction
 - Client background
 - Purpose of design project
 - General Overview of EMG
- Project overview
 - Neuroband Data Acquisition Unit
 - Circuit design
 - LabVIEW program
- Budget
- Conclusion
- Acknowledgements
- References and Further Reading
- Questions and comments
Client Background

- Dr. Mark Litt, Ph.D.
 - Clinical Psychologist at the University of Connecticut Health Center
 - Expert in Temporomandibular Joint Disorder and chronic orofacial pain treatment methods
 - Research interests include:
 - Influence of Cognitions and Affects on Pain and Illness
 - Psychoneuroimmunology
Purpose of Design Project

- Electromyography (EMG)
 - Detect bruxism (teeth clenching / grinding) events
- Reduce dependency on sleep lab diagnosis
 - Allow patients to be screened comfortably in their own home
 - Obtain data consistent with natural sleeping patterns
 - Maintain accuracy and efficacy of sleep labs
- User-friendly
 - Patient
 - Clinician
- Improve screening and diagnosis of TMJD
General Overview of EMG

- Electromyography (EMG)
 - Record electrical activity produced by skeletal muscles

- Facial muscles involved in TMJD
 - Left and Right Temporalis
 - Left and Right Masseter
Project Overview
Neuroband Data Acquisition Unit

- Uses Dr. Diane’s Neuroband EEG headband
- Ports for electrode snap leads located within chin strap and headband
- Features 9 electrode leads:
 - Two disposable electrodes per muscle
 - One reference electrode located on the patient’s forehead
Circuit Design

- Circuit requirements
 - Amplify EMG signals
 - High input impedance
 - High CMRR
 - Patient protection circuitry
 - Size consideration
 - Budget
Circuit Flowchart

Electrodes → Protection Circuitry → Instrumentation Amplifier → Bandpass Filter 25 Hz – 500 Hz

Analysis, Storage, and Display → LabVIEW Program → Notebook PC → USB 6008 DAQ
Schematic (one circuit)
Printed Circuit Board

- ExpressPCB Software
- Four Layer PCB
Circuit Enclosure
Circuit Enclosure (cont.)
LabVIEW Program Flowcharts

View EMG = TRUE → Select muscle → Select file → Read from file → Rectify EMG → Display

EMG → Rms EMG
LabVIEW Program Flowcharts

Start DAQ = TRUE

Data Acquisition

Split signal

Data > Threshold?

Yes

Extract Portion of Signal

Write to file

No
LabVIEW Program (cont.)

- Clinician’s Front Panel for viewing EMG:
 - Select muscle using tabs
 - Select file to view
 - Adjust speed
LabVIEW Program (cont.)

- Clinician’s Front Panel for setting threshold for EMG data storage
LabVIEW Program (cont.)

- Patient’s Front Panel to begin and stop data acquisition
 - LED Indicates signal acquisition started
Budget and Total Cost

Device Cost (each):

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit</td>
<td>$117.51</td>
</tr>
<tr>
<td>PCB</td>
<td>$40.73</td>
</tr>
<tr>
<td>Electrodes</td>
<td>$36.33</td>
</tr>
<tr>
<td>Leads</td>
<td>$192.45</td>
</tr>
<tr>
<td>Neuroband Components</td>
<td>$80.00</td>
</tr>
<tr>
<td>DAQ</td>
<td>$169.00</td>
</tr>
<tr>
<td>Laptop</td>
<td>$1,200.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$1,836.02</td>
</tr>
</tbody>
</table>

- Total allotment: $6,000
- Prototyping cost: $2,451.07
- Remaining allocation: $3,548.93
Conclusion

- The product works!
 - Portable
 - User friendly
 - Data acquisition unit acquires signals
 - Circuitry filters data
 - LabVIEW program analyzes, stores, and displays data
 - LabVIEW program will work on any Microsoft Windows computer

- We were significantly under budget
Acknowledgments

- Dr. Mark Litt, Ph.D.
- Dr. John Enderle, Ph.D.
- Emily Jacobs
- Marek Wartenberg
- Dave Kaputa
- Sonia Helena Contreras Ortiz
- Antonio Costa
- Penny Dobbins
References and Further Reading

- Philips Semiconductor, "UART to Bluetooth Interfacing." *NXP Semiconductors*. Philips 43
Questions and Comments