A Model to Demonstrate Compression Sleeve Technology on the Lymphatic System

Team 12
Nicole Lavoie and Christine Tartaglia

Client Contact: Susan Callison
Lymphedema Sleeve Company
47 Westfield Rd,
West Hartford, CT 06119
Overview

- Client Background
- What is Lymphedema?
- About Compression Sleeves
- Project Purpose
- Optimal Design
- Testing and Results
- Future Work
- Budget
- Acknowledgements
- Questions
Client Background

• Susan Callison
 ▫ Received surgery to remove 32 lymph nodes as treatment for breast cancer
 ▫ Developed lymphedema in 2009
 ▫ Founded the Lymphedema Sleeve Company

www.lymphedemasleeveco.com/index.php
What Is Lymphedema?

• Accumulation of interstitial fluid
• Due to damage of lymphatic system
• Primary vs. Secondary Lymphedema
• Symptoms
 ▫ Pain, swelling, heaviness and difficulty of use

Arm with severe lymphedema
Diagram of lymphatic flow during lymphedema
About Compression Sleeves

- Compression sleeve can be applied to affected limb to manage lymphedema
- Sleeve increases pressure placed on interstitial fluid increasing movement of lymph toward the venous system
- Many types and compression levels

Solidea Micromassage Sleeve Competitor Sleeve
Project Purpose

• Create a physical model to show effects of Solidea Slimming Sleeve on lymphatic system
 ▫ Model a lymphatic system in the arm
• Show effects of gravity, muscles, and compression sleeve
• Effects of external factors on lymphatic system
 ▫ Average pressure, fluid flow and fluid volume
 ▫ Lymphedema induced pressure, obstructed fluid flow and increased fluid volume
• Create an arm that can test different compression sleeves' effects on lymphatic system
Design Layout - Bone and Muscles

“Stagnant” muscle on bone

Bone and hinge

Completed muscle and bone design
Design Layout - Electrical System

Switchbox

Arduino

Solenoids

Design of PCB

3D Representation of PCB
Design Layout - Lymphatic Layer

- Lymphatic Schematic
- Peristaltic Pump
- Lymphatic Packets
- Muscle Tendon Covering
- Lymphatic System
Design Layout - Skin and Sleeve

- Upper Arm Tissue
- Lower Arm Tissue
- Tubing to Solenoids
- Fluid Pump
- Solidea Sleeves
- Outlet Cups
Testing and Results

- Tested various parameters of sleeve (sleeve on versus off) and arm (muscle activity versus no activity) but always in a state of lymphedema
Future Work

- Improvement of skin and subcutaneous tissue layer
- Use of a better developed lymphatic vessel system
- Automated lifting of lower arm and eventual lifting of upper arm as well
- Increasing muscle interaction
- Showing influence of micromassage texture on the skin
Budget

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-Flex Tubing</td>
<td>39.95</td>
<td>PVC Pipes and Pulley</td>
<td>12.50</td>
</tr>
<tr>
<td>Air Muscle Tubing</td>
<td>17.95</td>
<td>Styrofoam</td>
<td>23.57</td>
</tr>
<tr>
<td>Air Muscle Mesh</td>
<td>12.67</td>
<td>IV Bags</td>
<td>67.90</td>
</tr>
<tr>
<td>3 Way Solenoids</td>
<td>61.52</td>
<td>Pump</td>
<td>200.91</td>
</tr>
<tr>
<td>2 Way Solenoids</td>
<td>39.50</td>
<td>Transformers</td>
<td>25.00</td>
</tr>
<tr>
<td>Arduino Microcontrollers</td>
<td>114.69</td>
<td>Air Tubing</td>
<td>29.50</td>
</tr>
<tr>
<td>Foam</td>
<td>53.15</td>
<td>Printed Circuit Board</td>
<td>74.00</td>
</tr>
<tr>
<td>T-Connectors, Y Connectors</td>
<td>39.50</td>
<td>Shipping and Tax</td>
<td>125.21</td>
</tr>
<tr>
<td>Hose Clamps, Barb fittings</td>
<td>40.91</td>
<td>Total</td>
<td>978.43</td>
</tr>
</tbody>
</table>
Acknowledgements

• We would like to thank
 ▫ Dr. John Enderle
 ▫ Marek Wartenberg
 ▫ Dr. Donald Peterson
 ▫ Susan Callison
 ▫ Dr. Philip Allmendinger
 ▫ Peter Glaude
 ▫ Serge Doyon
 ▫ Mark Lavoie
 ▫ John Fikiet
 ▫ Dr. Montgomery Shaw
 ▫ Dr. Leslie Shor
 ▫ Dr. Mei Wei
 ▫ Fred Wright
 ▫ Andrew Bligh
 ▫ Stephen Elovetsky
Questions?
References

http://www.womenshealthsection.com/content/gyno/gyno0005.php3
http://www.dslrf.org/images/f26_01.gif
www.lymphedemasleeveco.com/index.php