Team 11:
Device to Monitor and Control IHD for Painful Stiff Shoulder Treatment

Kyle Bagshaw (Fluid Biomechanics)
Vesko Zlatev (Biomaterials)
University of Connecticut, Biomedical Engineering

Client, Advisor: Dr. Krystyna Gielo-Perczak
TA: Sarah Brittain
Background

- Adhesive Capsulitis (“Stiff Shoulder” or “Frozen Shoulder”): Painful chronic condition\(^1\)
 - Affects 3% of people at some point\(^2\)

- Symptoms
 - Reduced ROM
 - Pain (chronic & acute)

- Risk Factors
 - 20% have diabetes

- Common Treatments
 - Painkillers, steroids
 - Physical therapy
 - Surgical procedures
 - Very long recovery\(^1\)

\(^1\) http://srisugam.com/Stiff_Shoulder.aspx
Background

- Novel treatment: Intra-articular hydraulic distension (IHD)
 - Injection of fluid into articular capsule
 - Distends joint & increases ROM
 - Local anesthetic, steroids usually included

- Optimal conditions for treatment still unknown

Introduction

- **Project description from client:**
 - A device to monitor intra-articular pressure and control IHD in real-time, and record and analyze data to improve treatment and rehabilitation options

- **Specifications**
 - Control by PC
 - User interface
 - Portable
 - Procedure for use

- **Key Innovations**
 - Feedback control of pump system
 - Analysis of measurement errors
Project Design

Patient subsystem: Patient positioning, preparation, feedback
Operator subsystem: Operator functions, device interface, interactions with the patient
Fluid subsystem: Involves all parts of the mechanical system as the fluid is injected
Project Design

Computational subsystem: Involves the user interface, device control, feedback, and data acquisition and processing
NE-500 OEM

- Programmable
- LabVIEW compatible
- RS-232 pump-to-PC port w/ cable
- Power supply (120V A/C)

Error Analysis
- Data from manufacturer
- Future testing for analysis & calibration

http://www.syringepump.com/oem.php
PendoTECH Disposable Pressure Sensor

- Polycarbonate
- Reusable
- Fluid fittings: Luer-lock
- Wiring & specifications online
 - 4 analog pins: excitation voltage & signal voltage
- Error Analysis

NI USB-6008
- Analog & digital I/O (16 pins ea.)
- A/D conversion
- LabVIEW ready
- USB cable

Error analysis
- Design concern

http://www.ni.com/products/usb-6008/
Subunits: Syringe, Tubing, Adapters, Needles

- Terumo 30mL syringes (pump holds up to 60mL syringes)
- Tubing: 50’ bulk length, 1/16” inner diameter, vinyl
- Adaptors
 - Luer-lock w/ hose barb, male & female, polypropylene
 - 1-way check valves, SAN* w/ silicone diaphragm
- Needle
 - Need 22 gauge, 3.5” spinal needles to penetrate human glenohumeral capsule
- Error analysis
 - Leak-free
 - Effect of fittings

*Styrene-acrylonitrile resin
PC and User Interface

- LabVIEW driver
- Front Panel
 - User input/output
 - Real-time displays
 - Controls
- Background Operations
 - Negative feedback
 - Data processing
 - Data I/O
 - Pump communication

Complete System

Emergency Stop

Patient

Spinal Needle

1st Tubing

Pressure Sensor

Biohazard Waste Disposal

2nd Tubing

Syringe

Syringe Pump

Feedback Loop

Sanitization & Preparation

Ultrasound

Positioning

Operator

Patient Instruction

Data Display, User Interface

PC (LabVIEW)

DAQ

P vs. Curve

P vs. Volume Curve

Export Data
SolidWorks modeling for best design
 - Size, arrangement

Design concerns:
 - Safe for user
 - Communication between device and PC
 - Waterproof, spillproof
 - Components are secure & protected

Makes device more user-friendly
 - Portable
Patient Positioning System

- Device and/or procedure to stabilize the patient’s arm
 - Error associated with different patient positions
 - Intra-articular pressure changes with arm position\(^3\)
 - Identification of optimal position
 - Review of literature
- Risk Factors
 - Potential injury

\(^3\) Inokuchi et al, “The relationship between the position of the glenohumeral joint and the intraarticular pressure: An experimental study,” J. Shoulder Elbow Surg. 6:2 1997, 144-149
Error Analysis

- Mathematical relationships between physical variables must be established
 - E.g., fluid subsystem: relationship between intra-articular pressure & pressure sensor reading depends on system

Bernoulli's Equation:

\[P + \frac{1}{2} \rho V^2 + \rho gz = C \]

\[P_2 = P_1 + \frac{16\rho \dot{V}^2}{2\pi^2} \left(\frac{1}{D^4} - \frac{1}{d^4} \right) - \rho g h \]
Safety Issues

- Patient security
 - Automatic
 - Manual
- Sanitation
- Electrical insulation
Device Impact

- Improved therapy and patient rehabilitation
- Optimized effectiveness of treatment
- Accurate measurements
 - Significant reduction of measurement error
- Increased understanding of technique
- Economic treatment option
Budget

<table>
<thead>
<tr>
<th>Part</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syringe Pump</td>
<td>$520.00</td>
</tr>
<tr>
<td>DAQ (NI USB-6008)</td>
<td>$169.73</td>
</tr>
<tr>
<td>Syringes</td>
<td>$7.45</td>
</tr>
<tr>
<td>Pressure Sensor, 1-way check valves</td>
<td>$35.21</td>
</tr>
<tr>
<td>Vinyl tubing, male & female luer fittings with barb hose adaptors (1/16” inner diameter)</td>
<td>$37.52</td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>$777.77</td>
</tr>
<tr>
<td>REMAINING BUDGET</td>
<td>$222.23</td>
</tr>
</tbody>
</table>
Design Conclusions: Fall 2012

- Preliminary programming of DAQ and syringe pump
 - Pump run via driver from NI website
 - DAQ set up using Signal Processing toolbox & readings obtained

- Early assembly of prototype
 - Fluid subsystem complete except for needle
 - Pump & syringe modeled in SolidWorks for later use
Future Direction

- Patient positioning system
- Implementation of feedback loop
 - Integration of pump & sensor
- Programming
 - Computations
 - Data processing & exporting
- Construction of case
- Vitro testing for error analysis purposes (porcine shoulders)
- Testing, error analysis, modification
Acknowledgements

- Client, Faculty Advisor: Dr. Krystyna Gielo-Perczak*
- Dr. John Enderle
- TA: Sarah Brittain
- Mr. David Kaputa
- Mr. Orlando Echevarria

*Biomedical Engineering, University of Connecticut, Storrs, CT
Thank you!

Questions?