gPod

Accessible Blood Glucose Monitor Interface

Team 2
Matthew Bularzik, David Price, Michael Rivera

Sponsored by the Rehabilitation Engineering Research Center
People with diabetes must check their blood glucose levels several times daily with a portable meter. Diabetes can cause visual impairment, which can make using these meters a difficult process. Talking meters are available, but are not designed for simple operation.

Objective:
- Design a portable, reliable, low-cost blood glucose meter.
- Effectively communicate instructions and measurements visually and audibly.
- Consider the use of insulin vials and the identification of their contents.
Patients

- The meter must be designed to meet the following patient’s conditions:
 - Partial hearing loss
 - Parkinson’s disease
 - Slight to moderate tremors
 - Limited use of extremities
 - Blindness
Diabetes

- 14.6 million cases in America
- 5th leading cause of death
- Leading cause of blindness in adults 20-74
- 12,000-24,000 new cases of blindness annually
- No cure

Source: www.CDC.gov
Available Products

- Accu-Chek Advantage
 - Portable
 - 26 second results
 - 4 uL blood sample
 - No alternative site testing
 - Snap-in code key calibration
 - Large legible display
 - Cost: $65
Available Products

- OneTouch Ultra by Lifescan
 - Portable
 - 5 second results
 - 1 uL blood sample
 - Multiple site testing
 - Large legible display
 - Cost: $75
Available Products

- Voicemate by Accu-Chek
 - Portable
 - 26 second results
 - 4 uL blood sample
 - Snap-in code key calibration
 - Step-by-step voice instructions
 - Modular
 - Cost: $570
gPod Prototype

- Accurate Glucose Measurements
- Clear, Loud, Voice Output
- Barcode Scanner to Identify Insulin
Electronics

- Glucose Circuit
 - Filter
 - Trigger
- Speech Module
- User Interface
- Microprocessor
- Barcode Scanner
Glucose Filter

![Diagram of glucose filter circuit with resistors and capacitors labeled with values such as 10k, 56k, 47n, 100n, 22k, 2.2k, and 1u.](image)
Glucose Trigger
How does a glucose measurement work?

- Blood sample applied to sample well of test strip.
- Glucose oxidase reacts with glucose producing a current.
- Current converted to voltage.
- Voltage reading taken during linear phase of curve (2 seconds after sample applied).
- Voltage and glucose concentration have a linear relationship.
Speech Module

- Text-to-speech conversion
- RS-232 Communication
- Voice output for instructions and measurements
Microprocessor

- A/D conversion
- LCD control
- Speech control
- Barcode scanner
- Communication
Microprocessor

- MPLab
- Hi-Tech PICC compiler
- Programmed in C++
Barcode Scanner

- Scan National Drug Code Barcode
- Identify Type of Insulin
- Output type on LCD and by voice
- Took a OneTouch Ultra reading every 10 trials.
- Applied a known solution to gPod glucose meter.
- FDA requires an accuracy of +/- 20% difference.
- Examining the averages, the gPod and OneTouch Ultra are comparable in accuracy.
PCB Schematic

- Microprocessor
PCB Schematic

- SP03 Speech Module
- MAX232
PCB Schematic

Character LCD Screen
PCB Schematic

- Glucose Measurement
- Glucose Filter
PCB Schematic

- Trigger
- XOR Gate
PCB Schematic

- Power Input
- +/-5 Voltage Regulators
PCB Layout

Back – Facing into the case
PCB Layout

Front - Facing out of the case
Case Design

- OKW Handheld Enclosure
 - 9V Battery Slot
 - Display Window
 - PCB Mounts
Case Design

- Case Outside
 - Power Switch
 - Vial Scanning Switch
 - Vial Scanner Port
Case Design

- Case Outside
 - Test Strip Slot
 - Speaker Holes
 - Battery Compartment
Case Design

- Inside Casing
 - PCB Mounting
 - LCD Placement
 - Speech Module
Carrying Case

- Case can hold:
 - gPod
 - Test Strips
 - Lancets
 - Samplers
 - Insulin Vials
 - Control Solutions
 - Barcode Scanner
 - Spare Batteries
 - Log Book
 - User’s Manual
Budget – gPod Cost

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessor</td>
<td>$7.80</td>
</tr>
<tr>
<td>Character LCD</td>
<td>$11.39</td>
</tr>
<tr>
<td>Speech Module</td>
<td>$94.00</td>
</tr>
<tr>
<td>PCB Board</td>
<td>$101.20</td>
</tr>
<tr>
<td>Components</td>
<td>$37.49</td>
</tr>
<tr>
<td>Case</td>
<td>$23.29</td>
</tr>
<tr>
<td>Barcode Scanner</td>
<td>$98.99</td>
</tr>
<tr>
<td>Total:</td>
<td>$374.19</td>
</tr>
</tbody>
</table>
Budget - Development

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessor</td>
<td>$31.20</td>
</tr>
<tr>
<td>LCD</td>
<td>$137.84</td>
</tr>
<tr>
<td>Speech</td>
<td>$269.10</td>
</tr>
<tr>
<td>PCB Board</td>
<td>$241.95</td>
</tr>
<tr>
<td>Components</td>
<td>$419.86</td>
</tr>
<tr>
<td>Case</td>
<td>$0.00</td>
</tr>
<tr>
<td>Barcode Scanner</td>
<td>$271.50</td>
</tr>
<tr>
<td>Diabetes Supplies</td>
<td>$447.13</td>
</tr>
<tr>
<td>Total Spent:</td>
<td>$1818.58</td>
</tr>
<tr>
<td>Total Remaining:</td>
<td>$181.42</td>
</tr>
</tbody>
</table>
Conclusion

- Portable size
- Lower cost
- User-friendly interface
- Easy to read display
- Audible output
- Insulin Vial Identification
Acknowledgements

- Dr. John Enderle
- Christopher Liebler
- Tracy Makuch
- Dr. Robert Northrop
- Dr. Monty Escabi
- Dr. Martin Fox
- Dr. Quing Zhou
- Dave Kaputa
- Tom Price
- Anne Marie Bularzik
- RERC
Any Questions?