Our Faculty, Staff & Students

Contact Us

Krenicki Professor of Biomedical Engineering and Department Chair

Dr. Ki Chon
Phone: (860) 486-4767
Email: kchon@engr.uconn.edu


Lisa Ephraim
Undergraduate Academic Advisor
Phone: (860) 486-0163
E-mail: lisae@engr.uconn.edu

Jennifer Desrosiers
Financial Assistant II
Phone: (860) 486-0116
E-mail: jennd@engr.uconn.edu

Birgit Sawstrom
Admin Service Assistant III
Phone: (860) 486-5838
E-mail: birgit.sawstrom@uconn.edu


Main Office Address

Biomedical Engineering Department
A.B. Bronwell Building, Room 217
260 Glenbrook Road, Unit 3247
University of Connecticut
Storrs, CT 06269-3247
Phone: (860) 486-5838
Fax: (860) 486-2500

Nukavarapu, Syam

Syam P. Nukavarapu, Ph.D.
Associate Professor
Office Phone: (860) 486-6975
260 Glenbrook Road, Unit 3247, Storrs, CT 06269
Research Interests: Biomaterials, Engineered Grafts, and Tissue Engineering
PhD Indian Institute of Science
Postdoc Lehigh University
Postdoc University of Virginia

Research Summary:

The primary focus of Tissue Engineering Science and Technology Laboratory (TEST Lab), directed by Prof. Syam Nukavarapu is to develop biomaterial-based technologies applicable for tissue repair and regeneration. This effort utilizes functional biomaterials and their structures in the form of scaffolds to direct cell function and regulate tissue regeneration. The major thrust areas of the TEST Lab are: (i) Novel biomaterials/engineered structures, (ii) Model in vitro cell culture systems to study complex cell-material interaction, and (iii) Bioreactor technologies to enhance tissue regeneration. The overarching goal of TEST Lab is to engineer tissue and tissue interfaces to advance human health and gain new knowledge in biomedical engineering.

Novel biomaterials/ Engineered structures: Novel composite biomaterials/structures with tailorable and tunable physico-chemical properties applicable to musculoskeletal tissues. Few examples include oxygen-controlled matrices for large-area bone regeneration, and gradient structures for interfacial engineering such as the osteochondral interface. These efforts utilize both synthetic polymers, ceramics, novel composites and bio-inks developed from decellularized tissues.
Model in vitro cell culture systems to study complex cell-material interaction: Focus is to integrate physical and chemical cues in the three-dimensional scaffold microenvironment to promote cell-cell and cell-material interaction towards mature tissue phenotype development. Our ongoing efforts continue to study the effect of porosity, physical/chemical cues and topography to direct cell response and regulate multi-phasic tissue development, and bone-cartilage interface formation.
Bioreactor Technologies: Our current efforts are focused on the refinement of bioreactors applicable to multi-phasic grafts, and hyperbaric oxygen chambers to study the effect of high-pressure oxygen treatment on cell function and tissue regeneration. In this direction, the lab is devising new bioreactor technologies to culture stem cells/chondrocyte spheroids and study the role of mechanical loading on cellular phenotypic drift, which is a significant issue that limits progress in cartilage tissue engineering.

Honors and Awards:

  • Young Investigator Award, AO Foundation, Davos, Switzerland
  • Mentorship award, University of Connecticut
  • Junior Investigator Award, Musculoskeletal Transplant Foundation (MTF), Edison, NJ
  • Tissue Engineering Science and Technology Award, National Science Foundation (NSF)

Books Edited:

  • Nukavarapu SP, Liu H, Deng T, Oyen M, Tamerler C, Advances in Structures, Properties and Applications of Biological and Bioinspired Materials, MRS F13 Symposium Proceedings, Volume 1621, Cambridge Press.
  • Nukavarapu SP, Freeman J, Laurencin CT. Regenerative Engineering of Musculoskeletal Tissues and Interfaces, Woodhead Publishers, 2015.

Selected Publications: (PubMed and Google Scholar listing)

  • Nukavarapu et al., “Gradient Porous Scaffolds”. US Patent: 9,707,322 B2, 2017.
  • Dorcemus D, George E, Dealy C, Nukavarapu SP. Harnessing External Cues: Development and Evaluation of an In Vitroculture system for Osteochondral Tissue Engineering. Tissue Eng Part A. 2017 Aug;23(15-16):719-737.
  • Mikael P, Hyun K, Nukavarapu SP. Hybrid Extracellular Matrix Design for Cartilage-Mediated Bone Regeneration, J Biomed Mater Res B Appl Biomater. 2018 Jan;106(1):300-309. (Featured on Cover)
  • Xu TO, Kim HS, Stahl T, Nukavarapu Self-neutralizing PLGA/magnesium composites as novel biomaterials for tissue engineering. Biomed Mater. 2018 Mar 16;13(3):035013.
  • Amini AR, Xu TO, Chidambaram R, Nukavarapu, SP. Oxygen Tension Controlled Matrices with Osteogenic and Vasculogenic Cells for Vascularized Bone Regeneration In Vivo. Tissue Eng Part A, 2016, 22, 610-620. (Featured on Cover)